Hierarchical subband linear predictive cepstral (HSLPC) features for HMM-based speech recognition

نویسنده

  • Rathinavelu Chengalvarayan
چکیده

In this paper, a new approach for linear prediction (LP) analysis is explored, where predictor can be computed from a mel-warped subband-based autocorrelation functions obtained from the power spectrum. For spectral representation a set of multi-resolution cepstral features are proposed. The general idea is to divide up the full frequency-band into several subbands, perform the IDFT on the mel power spectrum for each subband, followed by Durbin's algorithm and the standard conversion from LP to cepstral coe cients. This approach can be extended to several levels of di erent resolutions. Muti-resolution feature vectors, formed by concatenation of the subband cepstral features into an extended feature vector, are shown to yield better performance than the conventional mel-warped LPCCs over the full voice-bandwidth for connected digit recognition task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DWT and LPC based feature extraction methods for isolated word recognition

In this article, new feature extraction methods, which utilize wavelet decomposition and reduced order linear predictive coding (LPC) coefficients, have been proposed for speech recognition. The coefficients have been derived from the speech frames decomposed using discrete wavelet transform. LPC coefficients derived from subband decomposition (abbreviated as WLPC) of speech frame provide bette...

متن کامل

Spectral subband centroid features for speech recognition

Cepstral coefficients derived either through linear prediction (LP) analysis or from filter bank are perhaps the most commonly used features in currently available speech recognition systems. In this paper, we propose spectral subband centroids as new features and use them as supplement to cepstral features for speech recognition. We show that these features have properties similar to formant f...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Acoustic Emotion Recognition Using Linear and Nonlinear Cepstral Coefficients

Recognizing human emotions through vocal channel has gained increased attention recently. In this paper, we study how used features, and classifiers impact recognition accuracy of emotions present in speech. Four emotional states are considered for classification of emotions from speech in this work. For this aim, features are extracted from audio characteristics of emotional speech using Linea...

متن کامل

Use of linear extrapolation based linear predictive cepstral features (LE-LPCC) for Tamil speech recognition

A new method, named linear prediction with linear extrapolation has been proposed in the past, which aims at modifying conventional linear prediction especially for speech coding applications. The basic idea is to reformulate the computation of linear prediction so that an optimal FIR-predictor of order 2p could be determined from p numberical values. In this work, we extend the above method to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999